

1:1 AND 1:2 REGISTERED **BUFFER WITH 1.8V SSTL I/O**

IDT74SSTU32864/ A/C/D/G

FEATURES:

- · 1:1 and 1:2 registered buffer
- 1.8V Operation
- SSTL_18 style clock and data inputs
- Differential CLK input
- Control inputs compatible with LVCMOS levels
- Flow-through architecture for optimum PCB design
- Latch-up performance exceeds 100mA
- ESD >2000V per MIL-STD-883, Method 3015; >200V using machine model (C = 200pF, R = 0)
- Maximum operating frequency: 340MHz
- Available in 96-pin LFBGA package

APPLICATIONS:

- Ideally suited for DDR2-400/533 (PC2 3200/ 4200) registered DIMM applications
- Along with CSPU877/A/D, zero delay PLL clock buffer, provides complete solution for DDR2-400/533 DIMMs
- SSTU32864 is optimized for DDR2 Raw cards B and C
- SSTU32864A is optimized for DDR2 Raw card A
- SSTU32864C/D/G are optimized for DDR2 Raw cards A, B, and C
- SSTU32864G has control pins for output slew rate control

DESCRIPTION:

The SSTU32864 is a 25-bit 1:1/14-bit 1:2 configurable registered buffer designed for 1.7V to 1.9V VDD operation. All clock and data inputs are compatible with the JEDEC standard for SSTL_18. The control inputs are LVCMOS. All outputs are 1.8V CMOS drivers that have been optimized to drive the DDR2 DIMM load.

The SSTU32864 operates from a differential clock (CLK and $\overline{\text{CLK}}$). Data are registered at the crossing of CLK going high and $\overline{\text{CLK}}$ going low.

The C0 input controls the pinout configuration of the 1:2 pinout from the A configuration (when low) to B configuration (when high). The C1 input controls the configuration from the 25-bit 1:1 (when low) to 14-bit 1:2 (when high).

This device supports low-power standby operation. When the reset input (RESET) is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when RESET is low all registers are reset, and all outputs are forced low. The LVCMOS RESET and Cx inputs must always be held at a valid logic high or low level.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the low state during power up.

In the DDR2 DIMM application, RESET is specified to be completely asynchronous with respect to CLK and CLK. Therefore, no timing relationship can be guaranteed between the two. When entering reset, the register will be cleared and the outputs will be driven low quickly, relative to the time to disable the differential input receivers. However, when coming out of a reset, the register will become active quickly, relative to the time to enable the differential input receivers. As long as the data inputs are low, and the clock is stable during the time from the low-to-high transition of RESET until the input receivers are fully enabled, the design of the SSTU32864 must ensure that the outputs will remain low, thus ensuring no glitches on the outputs.

The device monitors both \overline{DCS} and \overline{CSR} inputs and will gate the outputs from changing states when both $\overline{\text{CSR}}$ and $\overline{\text{CSR}}$ inputs are high. If either DCS or CSR input is low, the device will function normally. The RESET input has priority over the DCS control and will force the inputs low. If the DCS control functionality is not desired, then the CSR input can be hardwired to ground, in which case the set-up time requirement for DCS would be the same as for the other D data inputs.

The SSTU32864G has two slew control pins (ZoH and ZoL) used to optimize the signal integrity on the DIMM.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit	
Vdd	Supply Voltage Range		-0.5 to 2.5	V
VI ^(2,3)	Input Voltage Range		-0.5 to 2.5	V
Vo ^(2,3)	Output Voltage Range		-0.5 to VDD +0.5	V
lık	Input Clamp Current	put Clamp Current VI < 0		mA
		VI > VDD		
Іок	Output Clamp Current	Output Clamp Current Vo < 0		mA
	Vo > VDD			
lo	Continuous Output Current,		±50	mA
	Vo = 0 to VDD			
VDD	Continuous Current through each		±100	mA
	VDD or GND			
Tstg	Storage Temperature Range		-65 to +150	°C

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. The input and output negative voltage ratings may be exceeded if the ratings of the I/P and O/P clamp current are observed.
- 3. This value is limited to 2.5V maximum.

TERMINAL FUNCTIONS (ALL PINS)

Terminal	Electrical	·
Name	Characteristics	Description
GND	Ground Input	Ground
Vdd	1.8V nominal	Power Supply Voltage
Vref	0.9V nominal	Input Reference Voltage
ZoH ⁽¹⁾	LVCMOS	Output Slew Rate Control
ZoL ⁽¹⁾	LVCMOS	Output Slew Rate Control
CLK	Differential Input	Positive Master Clock Input
CLK	Differential Input	Negative Master Clock Input
Сх	LVCMOS Input	Configuration Control Inputs
RESET	LVCMOS Input	Asynchronous Reset Input. Resets registers and disables VREF data and clock differential-input receivers.
\overline{CSR} , $D\overline{CS}$	SSTL_18Input	Chip Select Inputs. Disables outputs Dx switching when both inputs are HIGH.
Dx	SSTL_18Input	Data Input. Clocked in on the crossing of the rising edge of CLK and the falling edge of CLK.
DODT	SSTL_18Input	The outputs of this register bit will not be suspended by the DCS and CSR controls
DCKE	SSTL_18Input	The outputs of this register bit will not be suspended by the DCS and CSR controls
Qx	1.8V CMOS	Data Outputs that are suspended by the DCS and CSR controls
QCSx	1.8V CMOS	Data Output that will not be suspended by the DCS and CSR controls
QODTx	1.8V CMOS	Data Output that will not be suspended by the DCS and CSR controls
QCKEx	1.8V CMOS	Data Output that will not be suspended by the DCS and CSR controls

NOTE

1. The signals will be left unconnected for the SSTU32864/A/C/D.

OPERATING CHARACTERISTICS, TA = 25°C (1,2)

Symbol	Parameter		Min.	Тур.	Max.	Unit
Vdd	Supply Voltage		1.7	_	1.9	V
Vref	Reference Voltage		0.49 * VDD	0.5 * Vdd	0.51 * Vdd	V
VTT	Termination Voltage		VREF- 40mV	Vref	VREF+ 40mV	V
Vı	Input Voltage		0	_	Vdd	V
VIH	AC High-Level Input Voltage	Data Inputs	VREF+ 250mV	_	_	V
VIL	AC Low-Level Input Voltage	Data Inputs	_	_	VREF-250mV	V
VIH	DC High-Level Input Voltage	Data Inputs	VREF+ 125mV	_	_	V
VIL	DC Low-Level Input Voltage	Data Inputs	_	_	VREF-125mV	V
VIH	High-Level Input Voltage	RESET, Cx	0.65 * VDD			V
VIL	Low-Level Input Voltage	RESET, Cx	_	_	0.35 * Vdd	V
Vicr	Common Mode Input Voltage	CLK, CLK	0.675	_	1.125	V
VID	Differential Input Voltage	CLK, CLK	600	_	_	mV
Іон	High-Level Output Current		_	_	-8	mA
loL	Low-Level Output Current		_	_	8	
TA	Operating Free-Air Temperature		0	_	70	°C

NOTES:

- 1. The RESET and Cx inputs of the device must be held at valid levels (not floating) to ensure proper device operation.
- 2. The differential inputs must not be floating unless $\overline{\text{RESET}}$ is LOW.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = 0^{\circ}C$ to $+70^{\circ}C$, $VDD = 1.8V \pm 0.1V$

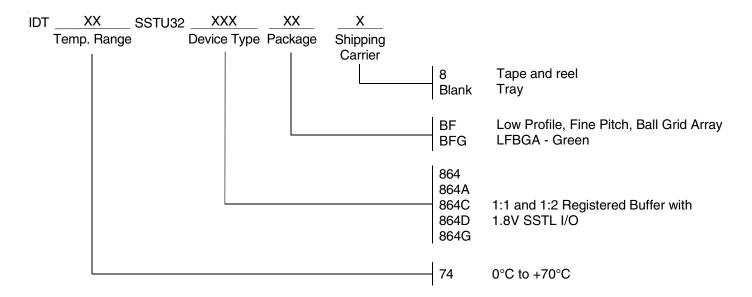
Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
Vон		VDD = 1.7V to 1.9V, IOH = -6mA	VDD = 1.7V to 1.9V, Iон = -6mA		_	_	V
Vol		VDD = 1.7V to 1.9V, IOL = 6mA		_	_	0.5	V
lı	All Inputs	VI = VDD or GND		-5	_	5	μА
IDD	Static Standby	Io = 0, VDD = 1.9V, RESET = GND		_	_	100	μА
	Static Operating	$IO = 0$, $VDD = 1.9V$, $\overline{RESET} = VDD$, $VI = VIH$ (AC) or V	/IL (AC)	_	_	40	mA
IDDD	Dynamic Operating	$IO = 0$, $VDD = 1.8V$, $\overline{RESET} = VDD$, $VI = VIH$ (AC) or \	$IO = 0$, $VDD = 1.8V$, $\overline{RESET} = VDD$, $VI = VIH$ (AC) or VIL (AC),		_	_	μA/Clock
	(Clock Only)	CLK and CLK Switching 50% Duty Cycle.					MHz
		$IO = 0$, $VDD = 1.8V$, $\overline{RESET} = VDD$,	1:1 Mode	_	_	_	
	Dynamic Operating	$VI = VIH (AC)$ or $VIL (AC)$, CLK and \overline{CLK} Switching at					μA/Clock
	(Per Each Data Input)	50% Duty Cycle. One Data Input Switching at	1:2 Mode	_	_	_	MHz/Data
		Half Clock Frequency, 50% Duty Cycle.					Input
	Data Inputs	VI = VREF ± 250mV		2.5	_	3.5	
Сі	CLK and CLK	VICR = 0.9V, VID = 600mV		2	_	3	pF
	RESET	VI = VDD or GND		2	_	4	

TIMING REQUIREMENTS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE

			VDD = 1.8'		
Symbol	Parameter		Min.	Max.	Unit
fclock ⁽¹⁾	Clock Frequenc	су	_	340	MHz
tw	Pulse Duration, CLK, CLK HIGH or LOW		1		ns
tact ⁽²⁾	Differential Inputs Active Time			10	ns
tinact ⁽³⁾	Differential Inputs Inactive Time		ı	15	ns
		DCS before CLK↑, CLK↓, CSR HIGH	0.7	_	
tsu	Setup Time DCS before CLK↑, CLK↓, CSR LOW DODT, CSR, Data, and DCKE before CLK↑, CLK↓	0.5	_	ns	
		DODT, CSR, Data, and DCKE before CLK↑, CLK↓	0.5	_	
tH	Hold Time	Data, DCS, CSR, DCKE, and DODT after CLK↑, CLK↓	0.5	_	ns

NOTES:

- 1. 270MHz max clock frequency for parts assembled and tested prior to WW37.
- 2. Data and V_{REF} inputs must be low a minimum time of tact max, after \overline{RESET} is taken HIGH.
- 3. Data, VREF, and clock inputs must be held at valid levels (not floating) a minimum time of tINACT max, after RESET is taken LOW.


SWITCHING CHARACTERISTICS OVER RECOMMENDED FREE-AIR OPERATING RANGE (UNLESS OTHERWISE NOTED) (1)

		V DD = 1		
Symbol	Parameter	Min	Max.	Unit
fMAX		340	_	MHz
tPDM ⁽²⁾	CLK and CLK to Q	1.41	2.15	ns
tPDMSS ^(2,3)	CLK and CLK to Q (simultaneous switching)	_	2.35	ns
trphl	RESET to Q		3	ns
dV/dt_r	Output slew rate from 20% to 80%	1	4	V/ns
dV/dt_f	Output slew rate from 20% to 80%	1	4	V/ns
dV/dt $_{\Delta}^{(4)}$	Output slew rate from 20% to 80%	_	1	V/ns

NOTES:

- 1. See TEST CIRCUITS AND WAVEFORMS.
- 2. Includes 350ps of test load transmission line delay.
- 3. This parameter is not production tested.
- 4. Difference between dV/dt_r (rising edge rate) and dV/dt_f (falling edge rate).

ORDERING INFORMATION

